Stable Reductive Varieties Ii: Projective Case

نویسنده

  • VALERY ALEXEEV
چکیده

0. Introduction 1 1. Main definitions 3 2. Polarized stable reductive varieties 4 2.1. Classification 4 2.2. Cohomology groups 8 3. Pairs 9 4. Moduli of stable reductive pairs 10 4.1. General remarks on families 10 4.2. One-parameter degenerations 11 4.3. Construction of the moduli space of pairs 13 4.4. Projectivity of the moduli space 17 4.5. Structure of the moduli space 18 5. Connection with the log Minimal Model Program 19 5.1. Arbitrary spherical varieties 19 5.2. Reductive varieties 21 5.3. Stable reductive varieties 23 6. Generalizations 25 6.1. Polarized varieties and pairs without linearization 25 6.2. Pairs (X,D1, . . . ,Dn) with several divisors 26 References 26

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quotients by non-reductive algebraic group actions

Geometric invariant theory (GIT) was developed in the 1960s by Mumford in order to construct quotients of reductive group actions on algebraic varieties and hence to construct and study a number of moduli spaces, including, for example, moduli spaces of bundles over a nonsingular projective curve [26, 28]. Moduli spaces often arise naturally as quotients of varieties by algebraic group actions,...

متن کامل

On K-stability of Reductive Varieties

G. Tian and S.K. Donaldson formulated a conjecture relating GIT stability of a polarized algebraic variety to the existence of a Kähler metric of constant scalar curvature. In [Don02] Donaldson partially confirmed it in the case of projective toric varieties. In this paper we extend Donaldson’s results and computations to a new case, that of reductive varieties.

متن کامل

ar X iv : m at h / 07 03 13 1 v 1 [ m at h . A G ] 5 M ar 2 00 7 TOWARDS NON - REDUCTIVE GEOMETRIC INVARIANT THEORY

We study linear actions of algebraic groups on smooth projective varieties X. A guiding goal for us is to understand the cohomology of “quotients” under such actions, by generalizing (from reductive to non-reductive group actions) existing methods involving Mumford’s geometric invariant theory (GIT). We concentrate on actions of unipotent groups H, and define sets of stable points X and semista...

متن کامل

Stable Spherical Varieties and Their Moduli

We introduce a notion of stable spherical variety which includes the spherical varieties under a reductive group G and their flat equivariant degenerations. Given any projective space P where G acts linearly, we construct a moduli space for stable spherical varieties over P, that is, pairs (X, f), where X is a stable spherical variety and f : X → P is a finite equivariant morphism. This space i...

متن کامل

Stable Reductive Varieties I: Affine Varieties

0. Introduction 1 1. Main definitions and results 3 2. General criteria 6 2.1. Seminormality and connectedness of isotropy groups 6 2.2. Finiteness of number of orbits and group–like condition 9 3. Orbits in stable reductive varieties 11 3.1. Isotropy groups 11 3.2. Algebras of regular functions 14 4. Reductive varieties 18 4.1. Classification 18 4.2. Associated stable toric varieties 20 5. Sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002